“Current Source DC/AC Converter for Renewable Sources”

A. Cardoso¹, N. Vazquez¹, C. Hernandez¹ J. Vaquero²

¹Electronics Department
Instituto Tecnológico de Celaya
Celaya, Mexico

²Electronics Technology Area,
Universidad Rey Juan Carlos
Móstoles, Spain
Outline

- Introduction
- Proposed dc/ac converter
 - Operating modes
- Proposed controller
- Simulation results
- Conclusions
Introduction

Leakage current
- Reduce efficiency
- Increase grid current distortion
- Give rise to the safety threats
- Reduce PV life time

\[v_{CM} = \frac{v_{1N} + v_{2N}}{2} + (v_{1N} - v_{2N}) \frac{L_2 - L_1}{2(L_1 + L_2)} \]
Introduction

Transformerless inverter options

✓ Heric
✓ H5
✓ H6, etc
Proposed Scheme

- Proposed photovoltaic transformerless inverter
 - Photovoltaic system
 - DC/AC Converter, current feed
 - Common Mode Inverter Output
Proposed Converter
Proposed Converter

Subcircuit A
Proposed Converter

✓ Subcircuit B
Proposed Converter

Subcircuit C
Proposed Converter

✓ Subcircuit D
Proposed Converter

✓ Subcircuit E
Switching States

<table>
<thead>
<tr>
<th>Subcircuit A (+)</th>
<th>Subcircuit B (-)</th>
<th>Subcircuit C (0)</th>
<th>Subcircuit D (0)</th>
<th>Subcircuit E (0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S_1) On</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>(S_2) Off</td>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>(S_3) Off</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>On</td>
</tr>
<tr>
<td>(S_4) On</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>On</td>
</tr>
<tr>
<td>(S_5) Off</td>
<td>Off</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
</tr>
<tr>
<td>(S_6) Off</td>
<td>Off</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
</tr>
</tbody>
</table>

Subcircuit A

- Increases if \(V_{in} \) is greater than \(V_{Cf} \) otherwise decreases.

Subcircuit B

- Increases if \(i_L \) is greater than \(i_{Lf} \) otherwise decreases.

Subcircuit C

- Increases if \(V_{Cf} \) is greater than \(V_{out} \) otherwise decreases.

Subcircuit D

- Increases if \(V_{Cf} \) is greater than \(V_{out} \) otherwise decreases.

Subcircuit E

- Increases if \(V_{Cf} \) is greater than \(V_{out} \) otherwise decreases.
Pulsewidth modulation
Auxiliary signals
Simulation Results

<table>
<thead>
<tr>
<th>L</th>
<th>5µH</th>
<th>C_f</th>
<th>10µF</th>
<th>L_f</th>
<th>2µH</th>
<th>C_{out}</th>
<th>1µF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sine wave voltage for PWM</td>
<td>10 V</td>
<td>Triangular voltage for PWM</td>
<td>±20 V</td>
<td>PV Voltage (V_{in})</td>
<td>120 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Line Frequency</td>
<td>60 Hz</td>
<td>Triangular Frequency for PWM</td>
<td>60 kHz</td>
<td>V_{out}</td>
<td>120 V</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Simulation Results

Auxiliary signals A and B, I_{out}, and I_L
Simulation Results

Zoom to auxiliary signals A and B, I_{out}, and I_L
Simulation Results

V_{out}, I_{out}, and I_L
Simulation Results

Leakage current

![Graph showing Leakage current over time](image)
Conclusions

- Introduction
- Proposed dc/ac converter
 - Operating modes
- Proposed controller
- Simulation results
- Conclusions