2017-09-14, Irvine CA

FOLLOWING THE EVIDENCE
HOW QUALITY OF APPLIANCE COMPONENTS CAN HINT AT NON-COMPLIANCE WITH EFFICIENCY REQUIREMENTS

Moritz-Caspar Schlegel, Anne Simo, Carsten Palkowski, Arno Knieschewski and Floris Akkerman*

BAM Federal Institute for Materials Research and Testing

*floris.akkerman@bam.de
Introduction
Introduction

Energy savings

- Environmental friendly production
- Responsible consumption of goods
- Modern waste treatment
- Circular Economy
- Alternative energy sources
- Optimizing efficiency
Introduction

Optimizing Efficiency

- Resource Efficiency
 - RRR – Reuse, Repair, Recycle
 - Calculation methods are in preparation within the EU
 - Standards, release date 03/2019

- Material Efficiency
 - Certain aspects are in discussion / implemented

- Energy Efficiency
 - Still implemented in legislation
 - Energy using and -related products
Energy Efficiency Requirements

- EU
 - Ecodesign and Energy Efficiency Labelling
- USA
 - Several requirements initiated by DOE, EPA and FTC
- China
 - Product Energy Efficiency Standards
- AUS
 - Minimum energy performance standards
- Etc.

Introduction
Market Surveillance Authorities (MSA)

Reasons and Activities

- Ensure fair competition and product safety
- Challenges due to:
 - Competence of testing (investment goods, special purposes, etc.)
 - Number of regulated products is increasing each year
 - Capacities
 - Time- and cost intensive

products MSA
Market Surveillance Authorities (MSA)

Reasons and Activities

- Ensure fair competition and product safety
- Challenges due to:
 - Competence of testing (investment goods, special purposes, etc.)
 - Number of regulated products is increasing each year
 - Capacities
 - Time- and cost intensive
Market Surveillance Authorities (MSA)

Surveillance Procedures

- Selection of product group
 - Based on experiences
 - Sometimes coupled with national action plans
- Single products are chosen randomly
- Different kind of inspections:
 - 1. Visual inspections
 - 2. Formal proof of attached documents
 - 3. Lab tests (cost intensive!)
Methodology
Methodology

Strategy for product selection

- 3 step model
 - Compliance tests (as usual)
 - Identification of significant components
 - Developing screening methods
- Identify components with a higher possibility to lead to non-compliance as others
- Use components as indicator for non-compliance
Methodology

Strategy for product selection
- 3 step model
 - Compliance tests (as usual)
Methodology

Strategy for product selection

- 3 step model
 - Compliance tests (as usual)
 - Dismantling and comparison
Methodology

Strategy for product selection

- 3 step model
 - Compliance tests (as usual)
 - Dismantling and comparison
 - Separate components
 - in efficient and
 - less-efficient

Product group

- some are compliant
- some are not compliant

Dismantling

- dismantle some
- dismantle all

Comparison

- not different
- different

Lack of products design

Traceable by documents

Screening method

- not possible
- possible
Methodology

Strategy for product selection

- 3 step model
 - Compliance tests (as usual)
 - Dismantling and comparison
 - Separate components
 - in efficient and
 - less-efficient
 - Develop screening methods
Data and Examples
Data

Research project “Support for the Market Surveillance”
- Launch: Jan 2016, Duration: 3 years
- Goal: Supporting the MSA in terms of Ecodesign and Energy labelling

Validating current measurement standards (tool: RRT)
- Kitchen hoods, tumble dryers, heat pumps and AC

Developing screening-methods (tool: Bunch of single tests)
- Decreasing costs and increasing identification rates
Data

Planned

- About 500 product tests, until end of 2017:
 - RRT should be finished
 - 50% of single tests should be carried out

Current stand:

- Kitchen hoods: 140 tests, 73 done
- Tumble dryers: 160 tests, 45 done
- Heat pumps: 70 tests, 24 done
- AC: 130 tests, 32 done
Example – No Screening methods possible

<table>
<thead>
<tr>
<th>Type</th>
<th>declared/lab</th>
<th>compressor</th>
<th>condenser</th>
<th>valve</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A++/A+</td>
<td>TFMN-522</td>
<td>50H-G</td>
<td>686</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Copeland)</td>
<td>(Alfa Laval)</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>A++/A++</td>
<td>TFD-455</td>
<td>100AH-G</td>
<td>632</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Copeland)</td>
<td>(Alfa Laval)</td>
<td></td>
</tr>
</tbody>
</table>

Different in product design..
Examples – Screening Method possible

???
Examples

Planned
- About 500 product tests, until end of 2017:
 - RRT should be finished
 - 50% of single tests should be carried out

Current stand:
- Kitchen hoods 140 tests 73 done
- Tumble dryers 160 tests 45 done
- Heat pumps 70 tests 24 done
- AC 130 tests 32 done
Summary

Following the Evidence – How quality of appliance components can hint at non-compliance with efficiency requirements
Summary

Motivation
- Number of regulated products is increasing
- Capacities and resources of MSA are “fixed”

Methodology
- MSA would be “pseudo-experts” for certain product groups
- More specific product tests – less test parameters
- Keep or increase the identification rate

Additional concepts are urgently needed
Summary

Limitations

- Concept is only working for products with >1 component
- More components – check the influence of each component
- Methodology is not an alternative, but useful addition

Current stand

- The concept is still tested!

Thank you for your attention!